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1 Supplementary Note 1: The C-TDC and T-TDC procedures are
unbiased estimators of false discovery rate

1.1 Elias and Gygi target-decoy competition

If we make the assumption that for each fixed i, Yi and Zi are independent and identically distributed
given Xi, and in particular P (Zi > Yi

∣∣Xi) = 1/2, then we can prove the following claim establishing the
symmetry on which TDC relies. Note that typically we make an even stronger assumption that Yi and Zi
are independent and identically distributed, as in our mixture model.

Claim 1. If Y,Z are independent and identically distributed given X then, assuming ties are randomly
broken by flipping a fair coin,

P (Z > Y | F) = P (Z < Y | F) =
1

2
. (1)

Here, F = {max(Y, Z) > max(X,T )} corresponds to the event: the PSM between σ and its best match
in db⊕ dc is a false positive.

Remark. In order for TDC to work, Elias and Gygi postulate that “incorrect assignments from target or
decoy sequences are equally likely” which is essentially this claim. Therefore, you can take this claim as the
initial assumption if you feel that the above assumption is too strong. Elias and Gygi also require that “no
correct peptides are found in both target and decoy portions” which we can interpret as: for any σ ∈ Σ1,
GP (σ) /∈ dc. However, because in our setup we randomly break ties we see no real need for the latter
constraint.

Proof. Because ties are broken it is clear that

P (Z > Y | F) + P (Z < Y | F) = 1.

Since Y and Z are iid, the joint distribution function of (X,Y, Z), FX,Y,Z , factors as

FX,Y,Z(x, y, z) = FX(x) ·Gx(y) ·Gx(z),

where Gx(y) = P (Y ≤ y|X = x) is the conditional distribution function of Y (and Z) given that X = x.
It follows that any two events which are symmetric in Y and Z should have the same probability, and in
particular we have

P (Z > Y | F) = P (Z < Y | F) .

∗Correspondence to uri@maths.usyd.edu.au, Phone: 61 2 9351 2307 and william-noble@uw.edu, Phone: 1 206 221-4973,
Fax: 1 206 685-7301
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The claim now follows.

Note that Yi need not be identically distributed for this claim to hold, however, we do need to assume
that given Xi, Yi is independent of Zi and the two have the same distribution. Alternatively we can assume
that the corollary of the latter claim, (1), holds. Whether or not this condition is approximately satisfied in
practice depends on the definitions of the target and decoy databases as well as on the scoring scheme.

Is C-TDC biased? The answer to this question depends how you look at it.

Claim 2. Under the assumptions of Claim 1

E(FC) = 2E(FD) = E(F̂C)

Proof. Let FT = |{i : Yi > max(xi, Zi, T )}| be the unobserved number of false discoveries that fall in the
target db. Multiplying (1) for each i by P (Fi) (or, alternatively invoking again the symmetry in Y and Z)
we have, for all i

P (Zi > max {Xi, Yi, T}) = P ({Zi > Yi} ∩ Fi) = P ({Zi < Yi} ∩ Fi) = P (Yi > max {Xi, Zi, T}) . (2)

Summing over all i we find that

E (FD) =
∑
i

P (Zi > max {Xi, Yi, T}) =
∑
i

P (Yi > max {Xi, Zi, T}) = E (FT ) . (3)

The claim now follows from FC = FT + FD.

The last claim shows that F̂C is an unbiased estimator of FC , which is the number of false positives in
the concatenated search against the combined dataset db⊕ dc. Moreover, if nΣ is rather large and does not
contain “too many” repetitive spectra then with high probability FD/FC ≈ 1/2; therefore, 2FD/DC is a
reasonably good estimator of the rate of false discoveries in the concatenated search.

However, recall that we are interested in the rate of false discoveries in the set of discoveries that fall
within the target database. The latter has only DT = DC − FD PSMs in it, and the number of false
discoveries among those is

FT = |{i : Yi > max(Xi, Zi, T )}| . (4)

Therefore, the FDR among our reported discoveries is

FT
DT

=
FT

DC − FD
≤ FT + FD

DC
,

where the latter inequality, which follows from FT ≤ DT , is strict when FD > 0 (which essentially always
occurs in a reasonable search). Note that the right-hand side of the last equation is the FDR in the
concatenated search, which is what the C-TDC estimator of 2FD/DC is trying to predict. It follows that
C-TDC is conservatively biased when it comes to estimating the FDR in the set of target discoveries.

Remark. Although this was not the original intent of Elias and Gygi, the next claim shows that the C-TDC
estimator is sufficiently conservative to allow us to conservatively estimate the FDR among the set of D
discoveries when searching the target database on its own. Indeed, the claim proves what is intuitively
obvious: FC/DC is larger than F/D, since the concatenated database allows more false discoveries without
increasing the number of true discoveries.

Claim 3.
FC/DC ≥ F/D (5)

Proof. Let Nf = FC − F and similarly Nd = DC − D. It is easy to see that Nf ≥ Nd ≥ 0, and since

FC/DC =
F+Nf

D+Nd
and F ≤ D the claim follows.

Note that the inequality in (5) will typically be a strict one because Nf > Nd for most reasonable setups.
To summarize, C-TDC presents an asymptotically unbiased estimator of FC/DC , the FDR in the con-

catenated database. However, it is a conservative estimator of F/D, the FDR in the target-only set of
discoveries, as well as of FT /DT , the FDR in the target-filtered set of TDC discoveries. This result means
that if we want to control the FDR at level α using C-TDC we will need to set the threshold T higher than
we would have had we been able to directly control F/D at the same level α. In practical terms, this means
that C-TDC is conservative when compared to an ideal tool that allows us to control F/D directly.
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1.2 “Target-only” target-decoy competition

First note that DT is observable, and we showed that E (FD) = E (FT ) (3) so T-TDC has the right ex-
pectation in some sense. Moreover, for an independent set of spectra FT /FC −→ 1/2 with probability 1
as nΣ → ∞ (we are assuming here that FC −→ ∞ as well, as will be the case for any reasonable setup),
and it follows from FC = FT + FD that FT /FD −→ 1 with probability 1. Therefore, if the set of spectra is
large and “fairly independent” we expect that T-TDC ≈ FT /DT . More precisely, the ratio between the two
quantities goes to 1 almost surely when the size of the set of independent spectra goes to infinity:

Claim 4. If the spectra are independent, and the number of spectra nΣ −→∞ in such a way that the number
of false discoveries FC −→∞ then with probability 1

T-TDC

FT /DT
−→ 1.

Remark. We again stress that in the TDC approach we do not have to assume that the Yi (or Zi) are
identically distributed, rather that separately for each fixed i, given Xi, Yi and Zi are independent and
identically distributed.
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2 Supplementary Note 2: STDS-PIT underestimates the true
FDR

While STDS-PIT provides an intuitively appealing way to estimate the FDR, we argue that in the context
of our model this method underestimates the FDR. The problem goes back to π0, the proportion of true null
hypotheses. In their paper, Käll et al. call this proportion PIT (percentage of incorrect targets), suggesting
that the PIT estimates the overall rate of incorrectly identified PSMs in the target database. However, it
is important to understand what is the null hypothesis according to which the p-values are computed here.
Because the p-values are estimated from the decoy set, the null hypothesis is that the spectrum is foreign.
Therefore, if we use the FDR analysis of Storey1, then the resulting π̂0 estimates |Σ0| / |Σ| = 1 − π1, the
proportion of foreign spectra in our input set. Of course, this estimate ignores all the incorrect targets that
are attributed to the native spectra.

One might argue that Käll et al. define the problem differently. Indeed, their setup is such that they
only care whether the PSM is random (null hypothesis) or a correct one (alternative hypothesis). Using this
setup the proportion of true null hypotheses as estimated by Storey’s FDR analysis does indeed coincide
with their desired PIT, thus seemingly validating their estimate.

However, note that the p-values to which the FDR analysis is applied are estimated from a set of foreign
spectra (all spectra are foreign relative to the decoy database). Therefore, if you accept the model presented
here, then these p-values are not always correctly calculated relative to the null “the PSM is random”.
Indeed, in relying on the decoy set to estimate the p-value of a PSM involving a native spectrum σi ∈ Σ1

we ignore the fact that the optimal random match yi needs to compete with the score of the true match
xi. For example, no random PSM involving σi can score lower than xi; therefore, it could not be assigned a
p-value less significant than that assigned to xi. This is in contradiction to the fact that p-values of true nulls
should be distributed uniformly on [0,1]. Thus, the p-values of PSMs involving σ ∈ Σ1 are overestimated
(too small), which in turn leads to underestimating the true PIT (too small).
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3 Supplementary Note 3: suggested implementation of mix-max

Equation (9) in the main paper shows how we estimate the FDR in the target list of discoveries defined by
all PSMs whose score exceeds the threshold T . In practice the user is typically interested in estimating the
FDR associated with accepting the top k target PSMs for all possible values of k = 1, 2, . . . , nΣ.

More precisely, we want the estimated FDR assuming we accept all target PSMs with score s ≥ wm for
each wm in the set of all target PSM scores {wj : j = 1, . . . , nΣ}. For any fixed wm this can be done using
the main paper (9) by choosing any threshold T which satisfies

max{zj : zj < wm} < T < wm. (6)

Note that the target discovery list associated with any T which satisfies (6) is the set {wj : wj ≥ wm}.
Similarly, it is easy to see that for any such T the mix-max estimated FDR (9) in the main paper is equivalent
to

F̂

D
(wm) :=

π̂0 ·
∑nΣ

j=1 1zj≥wm
+ (1− π̂0) ·

∑
zj≥wm

[ ∑
k 1wk≤zj

(1−π̂0)·
∑

k 1zk≤zj
− π̂0

1−π̂0

]
[0,1]∑

i 1wi≥wm

. (7)

Thus, our goal here is to compute for all target PSM scores {wm} the mix-max estimate of the FDR in (7)
above. Rather than calculating the right hand side of (7) separately for each wm we provide pseudocode that
makes more efficient use of the relations between the number of discoveries and estimated false discoveries
as we progress along the sorted list of increasing target scores {w(m)}. To take advantage of these relations
we introduce in the pseudocode below the variables

Nw≤z(j) =
∑
k

1wk≤z(j)
Nz≤z(j) =

∑
k

1zk≤z(j)
Nz≥w(j) =

∑
k

1zk≥w(j)
Nw≥w(j) =

∑
k

1wk≥w(j)
, (8)

where z(j) denote the list of decoy scores in increasing order.
Note that in the absence of ties Nz≤z(j) = j but given that we allow ties we only know that Nz≤z(j) ≥ j.

Regardless, since the input to mixmaxFDR below is the sorted lists of target and decoy PSM scores ({w(m)}
and {z(m)}) the above vectors can readily be computed in time O(nΣ) (in fact, the computation of Nz≥w
and Nw≥w can be rolled into the main loop of mixmaxFDR).
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Algorithm 1 Procedure for estimating the FDR using mix-max. The inputs are the sorted lists of
target and decoy calibrated PSM scores, w(i) and z(i), respectively. The output is a list R, where Rm is the
mix-max estimated FDR of (7) with wm = w(m).

1: procedure mixmaxFDR(w(i), z(i))
2: Estimate p, the p-values of w, using the empirical distribution of z
3: Compute π̂0 by applying R’s qvalue function to p
4: n← length(w)
5: if π̂0 = 1 then
6: Return a vector of n 1s
7: end if
8: Compute the vectors Nw≤z, Nz≤z, Nz≥w, Nw≥w . See (8) above
9: E1 ← 0

10: j ← n
11: for m← n . . . 1 do
12: while (j > 0) & (z(j) ≥ w(m)) do
13: p̂← [Nw≤z(j)− π̂0 ·Nz≤z(j)] / [(1− π̂0) ·Nz≤z(j)]
14: E1 ← E1 + min{1,max{0, p̂}} · (1− π̂0)
15: j ← j − 1
16: end while
17: R(m)← [π̂0 ·Nz≥w(m) + E1] /Nw≥w(m)
18: R(m)← min{R(m), 1}
19: end for
20: return R
21: end procedure

6



4 Supplementary Note 4: the effects of our 10K-calibration pro-
cedure on FDR estimation

To test whether the way we calibrate our scores using 10K decoys (see Methods) significantly impacts any
of the FDR estimation methods, we slightly modified our simulated data experiment. Specifically, we added
a calibration step whereby each randomly drawn PSM score was calibrated using a “spectrum-specific”
sample of 10K scores drawn according to the null distribution. Note that our simulated PSM scores were
perfectly calibrated to begin with, so this redundant calibration procedure only compromised the initial
perfect calibration. Its goal, however, was to mimic the effect of our spectrum-specific calibration procedure,
which is applied to the real data where perfect calibration cannot be achieved.

Looking at the accuracy of the estimated FDR (Supplementary Figure 7) we note that overall it is quite
similar to the accuracy on the original simulated data (main Figure 3) with the notable exception that both
T-TDC and mix-max slightly overestimate the FDR (too conservative) for moderately large spectrum sets
(≥10K) and small FDR value (<0.01).

The reason for T-TDC changing its behavior from underestimating to overestimating the FDR for larger
spectrum sets has to do with the fact that once the set of spectra becomes as large as the number of decoys
we use in our non-parametric calibration it is very difficult to avoid false discoveries with maximal possible
score. These false discoveries in turn tend to inflate the estimation of small FDR values. For example,
imagine that a set of 30K spectra, of which 15K are native, has 10% true PSMs that receive a maximal
score under the 10K calibration procedure. In this case, the expected number of maximally scoring decoy
PSMs is 3 (we are using 10K decoys to calibrate each spectrum score); therefore, on average the smallest
T-TDC estimated FDR will be about 3/1500 ≈ 0.002. In all those cases, where an FDR level of 0.001 is
not attainable, the actual FDR at that threshold of 0.001 will be 0 because there are no discoveries at that
level. (Note that we are using the convention that the FDR is defined as 0 when there are no discoveries.)
Hence, in such cases, the actual FDR will be lower than the nominal one, effectively implying that T-TDC
is overestimating the true FDR.

Finally, in terms of the relative number of discoveries we see there is little difference compared with the
original data (Supplementary Figure 8).
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Figure 1: Accuracy of C-TDC estimated FDR (mixture model). Similarly to Figure 3 in the main
paper, the accuracy of the C-TDC FDR estimation method is gauged by plotting the logarithm of the median
ratio between the actual FDR and the nominal one. The graphs were generated using the same data that
was used in the said figure. The left figure shows that C-TDC is reasonably well estimating the FDR in the
combined target and decoy list when the spectra is reasonably large or when the FDR is not too small (say,
above 5%). However, if the C-TDC is used to estimate the FDR in the target-only list then as expected it
is significantly conservative: the actual FDR in the target list of discoveries is substantially smaller than the
estimated one.
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T-TDC mix-max
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Figure 2: Accuracy of estimated FDR (mixture model, larger separation). Same as Figure 3 in the
main paper, except the scores of the native spectra matches Xi were drawn from a N(3.0, 1) distribution
which increased the average separation between the correct PSMs and the false ones which were still drawn
from a N(0, 1) distribution. The results are qualitatively quite similar to the original figure though STDS-
PIT is a little less liberal than before while STDS is a little more conservative and both mix-max and T-TDC
are overall slightly more accurate.
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STDS-PIT+qvality STDS-PIT
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Figure 3: Accuracy of STDS-PIT+qvality. Similarly to Figure 3 in the main paper, the accuracy of the
STDS-PIT+qvality FDR estimation method is gauged by plotting the logarithm of the median ratio between
the actual FDR and the nominal one. The graphs of STDS-PIT+qvality were generated using data that was
generated according to the exact same protocol used to generate the data that was used in the graphs of
STDS-PIT. The latter is added here so as to ease the comparison between the two methods. It seems that
in this setup there is little difference between these methods.
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Figure 4: Median ratios of number of discoveries, larger separation. Same as Figure 4 in the
main text, except the native spectra matches Xi were drawn from a N(3.0, 1) distribution rather than from
a N(2.5, 1) distribution which increased the average separation between the correct PSMs and the false
ones (which were still drawn from a N(0, 1) distribution). The results are qualitatively quite similar to
the original figure although the differences between the methods (and particularly between STDS-PIT and
mix-max) naturally diminish as the separation between the native and null scores grows larger. The graphs
are again derived from 10K draws.
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Figure 5: Median ratios of number of discoveries. Same as Figure 4 in the main paper except the
native spectra rate was set to 1 − π0 = 0.3 for the two top panels and to 1 − π0 = 0.7 for the two bottom
panels. Comparing these two cases with 1 − π0 = 0.5 in Figure 4 (main paper) we see that the difference
between the methods diminishes with the decrease in the proportion of native spectra.
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Figure 6: Median number of T-TDC and C-TDC discoveries in the yeast dataset. Using the
same data as in Figure 6 in the main paper each panel plots, as a function of estimated FDR, the median
number of T-TDC and C-TDC target discoveries. The spectrum sets are the yeast, worm and malaria data
sets. In each plot, the medians were taken with respect to 1000 corresponding discovery numbers using
that many randomly drawn decoy databases. Each pair of target-decoy databases was searched using two
different search engines: Tide and MS-GF+. Because C-TDC is estimating the FDR in the combined list of
discoveries it is clearly conservative when it is used to determine the number of target discoveries.
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Figure 7: Accuracy of estimated FDR (mixture model, 10K calibrated scores). Same as Figure 3
in the main paper, except all randomly drawn PSM scores (correct and false) were first “calibrated” using
spectrum specific empirical distributions that were derived from 10K randomly drawn null (false) scores.
Note that as the scores were initially perfectly calibrated the result of this step is in fact compromising
the level of calibration but the goal here is to learn the effects of such 10K calibration on the of FDR
estimation. While for small spectrum sets (500, 1K) the results do not differ substantially from when using
perfectly calibrated scores (Figure 3), when the size of the spectrum set is comparable or larger than the
10K decoys used for the non-parametric calibration both T-TDC and mix-max slightly overestimate rather
than underestimate the true FDR at small FDR values.
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Figure 8: Median ratios of number of discoveries, 10K calibrated scores. Same as Figure 4 in the
main text, except the data generation involved the redundant 10K calibration procedure as described in
Figure 7 above. Comparing this figure with the one in the main paper we see little very little difference.
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